
Quantum kink model and SU(2) symmetry: spin interpretation and  T-violation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 6081

(http://iopscience.iop.org/0305-4470/31/28/021)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 6081–6085. Printed in the UK PII: S0305-4470(98)91583-9
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interpretation and T -violation
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Department of Theoretical Physics, Dnepropetrovsk State University, per. Nauchny 13,
Dnepropetrovsk 320625, Ukraine
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Abstract. In this paper we consider the class of exact solutions of the Schrödinger equation
with the Razavi potential. By means of this we obtain some wavefunctions and mass spectra
of the relativistic scalar field model with spontaneously broken symmetry near the static kink
solution. Appearance of the bosons, which have two different spins, will be shown in the
theory, thereby the additional breaking of discrete symmetry between the quantum mechanical
kink particles with the opposite spins (i.e. theT -violation) takes place.

At present, quantum field theories, having topologically non-trivial solutions, are being
intensively developed. The mass spectra of particles, which are predicted by such theories,
can be received by means of the effective action formalism [1], which describes the low-
energy dynamics of stable solutions taking into account small quantum oscillations. In
particular, [2] was devoted to one such theory, namely, thed = 1+ 1 relativistic model
ϕ4 with spontaneously broken symmetry. In that paper the non-perturbative quantum scalar
field theory near the static kink solution, which can be interpreted as a quantum mechanical
heavy particle, was considered. As a result of quantization of the kink’s internal degrees
of freedom, the Schrödinger equation was received in terms of the raising and lowering
operators. It was noted that, dependent on what ordering procedure for the operators was
chosen, unitary non-equivalent theories take place. Regrettably, important aspects of the
physical sense of such theories, as well as the question of obtaining exact solutions and
mass spectra, remain open. In this paper we try to resolve these problems in particular. It
became possible owing to the analogies found between the key equations of [2] and the
wide class of the Schrödinger equations with the double-well potentials related to SU(2)
symmetry [4–6], in particular, the Razavi potentials [7–9].

We start from the action

S[ϕ] =
∫

d2x

1

2

∂ϕ

∂xi

∂ϕ

∂xi
− 1

4
g2

[
ϕ2−

(
m

g

)2
]2
 (1)

where ϕ(x, t) is the dimensionless scalar field,m and g are real parameters. The
corresponding equations of motion have the kink solution [3]

ϕc(x) = m

g
tanh

mx√
2

(2)
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with the non-trivial behaviour at infinity

ϕc(+∞) = −ϕc(−∞) = m

g
(3)

and the non-zero topological charge

Q = g

m

∫ +∞
−∞

∂ϕ(x)

∂x
dx = g

m
[ϕ(x = +∞)− ϕ(x = −∞)]. (4)

We perform transformation on the new set of the variables

xm = xm(s)+ em(1)(s)ρ
ϕ(x, t) = ϕ̃(σa) σa=0 = s σa=1 = ρ

(5)

wheres andρ are the so-called collective coordinates,xm(s) turn out to be the coordinates of
a (1+1)-dimensional point particle,em(1)(s) is the unit spacelike vector, which is orthogonal
to a worldline of the particle. It should be pointed out that unlike(x, t) the new base
variables(s, ρ) are invariant under the Poincaré transformations.

Considering fieldϕ̃(σa) excitations near the kink (2) and eliminating zero modes, it is
possible to obtain the non-minimalp-brane (more strictly, non-minimal (1+1)-dimensional
point particle with curvature) action as a residual effective action for the model (1), see [2]
for details,

Seff = −µ
∫

ds
√
ẋ2

(
1+ k2

3m2

)
(6)

µ = 2
√

2

3

m3

g2
(7)

wherek =
√
−aiai is the curvature of a point-particle worldline,an is the acceleration

an = 1√
ẋ2

d

ds

ẋn√
ẋ2
.

From (6) it follows that we have obtained a theory with higher derivatives. In this
theory we have two pairs of canonical variables{xm, pm} and {qm = ẋm,5m} which are
constrained on a certain submanifold of the total phase space by both the two primary first-
kind constraints81,2 ≈ 0 and the proper time-gauge condition

√
qmqm ≈ 1. After some

transformations one of the constraints can be rewritten as

82 = −
√
p2 coshv + µ− µ

ξ2
52
v ≈ 0 (8)

ξ = 2√
3

µ

m
(9)

wherev is the new coordinate,5v is the corresponding momentum, which are interpreted in
paper [2] as the spin values. Below it will be shown that this interpretation is not complete
and the true SU(2) spin operators will be introduced.

In the quantum case the condition̂82|9〉 = 0, where5̂v = −i∂/∂v is the momentum
operator in the coordinate representation and9 = 9(v) is the wavefunction of the kink,
must be satisfied. The constraint8̂2 permits two modifications, consideration of which
gives us the equations of motion in terms of the raising and lowering operators

[a†λaλ − ξ2(1− λ)]9(v) = 0 (10)

[aλa
†
λ − ξ2(1− λ)]9(v) = 0 (11)
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where

aλ = d

dv
+
√

2λξ sinh
v

2
(12)

λ =
√
p2

µ
= M

µ
. (13)

These equations can be written in the form of a Schrödinger equation(
− d2

dv2
+ 2λξ2 sinh2 v

2
−
√
λ

2
ξ cosh

v

2

)
9(v) = ξ2(1− λ)9(v) (14)(

− d2

dv2
+ 2λξ2 sinh2 v

2
+
√
λ

2
ξ cosh

v

2

)
9(v) = ξ2(1− λ)9(v). (15)

In [2] only equation (14) was considered, for which the wavefunction of the ground
(vacuum) state was found

aλ=19vac(v) = 0

9vac(v) = C exp
(
−2
√

2ξ cosh
v

2

)
.

(16)

Below we represent the approach, which helps us to take a new look at the expressions
(10)–(15) as well as to obtain some exact results and deeper interpretation of the theory.

Let us consider the Schrödinger equation [7–9]

[Ĥ − ε]9(ζ) = 0 (17)

where

Ĥ = − d2

dζ 2
+ B

2

4
sinh2 ζ − B

(
S + 1

2

)
coshζ. (18)

HereS andB are dimensionless parameters. It can readily be shown that SU(2) is the
dynamic group of symmetry for this Hamiltonian and to provide the direct analogy with the
spin Hamiltonian

Ĥs = −S2
z − BSx (19)

using the information induced by the su(2) Lie algebra [10].
On a subsetL2(R) the following spin operators act

Sx = S coshζ − B
2

sinh2ζ − sinhζ
d

dζ
(20)

Sy = i

{
−S sinhζ + B

2
sinhζ coshζ + coshζ

d

dζ

}
(21)

Sz = B

2
sinhζ + d

dζ
. (22)

Thereby the commutation relations

[Si, Sj ] = iεijkSk (23)

S2
x + S2

y + S2
z ≡ S(S + 1) (24)

are valid.
Now we consider the caseS > 0. Then an irreducible finite-dimensional subspace of

representation space of the SU(2) algebra, which is invariant with respect to the operators
(20)–(22), exists. Its dimension is 2S + 1.
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One can verify [8] that the solution of (17) is the function

9(ζ) = exp

(
−B

2
coshζ

) S∑
σ=−S

cσ√
(S − σ)!(S + σ)! exp(σζ ) (25)

where the coefficientscσ satisfy with the system of linear equations

(ε + σ 2)cσ + B
2

[√
(S − σ)(S + σ + 1) cσ+1+

√
(S + σ)(S − σ + 1) cσ−1

]
= 0

cS+1 = c−S−1 = 0 σ = −S,−S + 1, . . . , S.
(26)

The solution of this system is equivalent to the determination of eigenvectors and
eigenvalues of the operator̂H in the matrix representation, which is realized in a finite-
dimensional subspace of the su(2) Lie algebra. Analytical solutions of equations (25) and
(26) were found for the following spin values.

(i) S = 0. The dimension of the invariant subspace of the algebra is equal to 1, therefore,
only one wavefunction and ground-state energy can be found. We have

90(ζ ) = A0 exp

(
−B

2
coshζ

)
ε0 = 0. (27)

(ii) S = 1
2. We obtain two wavefunctions and energies of according states

90(ζ ) = A0 exp

(
−B

2
coshζ

)
cosh

(
1

2
ζ

)
ε0 = −B

2
− 1

4

91(ζ ) = A1 exp

(
−B

2
coshζ

)
sinh

(
1

2
ζ

)
ε1 = B

2
− 1

4
.

(28)

(iii) S = 1. There are solutions for three lower levels

90(ζ ) = A0 exp

(
−B

2
coshζ

)(
1− ε0

B
coshζ

)
ε0 = − r+

2

91(ζ ) = A1 exp

(
−B

2
coshζ

)
sinhζ ε1 = −1

92(ζ ) = A2 exp

(
−B

2
coshζ

)(
1− ε2

B
coshζ

)
ε2 = − r−

2

(29)

wherer± = 1±√1+ 4B2, Ai are integration constants.
(iv) S = 3

2, 2. In this work these cases are not considered, however, it is still possible
to find exact solutions for them [8].

(v) S > 2, 2S is an integer. Since it is impossible to solve the system (26) exactly,
there are not any analytical solutions in this case.

(vi) Either 2S is a non-integer orS < 0. For such spin values an invariant subspace of
the algebra does not exist [9].

Now we apply the results obtained above to thed = 1+ 1 relativistic modelϕ4 with
spontaneously broken symmetry near the static kink solution. Indeed, it is easy to show
that equations (14) and (15) can be rewritten in the form (17), if we suppose

v = 2ζ B = 4
√

2λξ ε = 4ξ2(1− λ)
andS = 0 for the equation (14),S = −1 for (15).

For S = 0 from equations (9), (13) and (27) we obtain the mass spectrum of the kink
boson in the ground state. It equals the spectrum for the case of a free particle with the
massµ

M
(S=0)
(n=0) = µ (30)
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and the known result (16) can be obtained.
It is easy to see that the symmetry between the particles with the spinsS = 1 and

S = −1 is broken in the studied theory. Indeed, forS = 1 equations (9), (13) and (29)
yield

M
(S=1)
(n=0) = µ−

21

32

m2

µ
± 27m

32

√(
m

µ

)2

+ 512

243

M
(S=1)
(n=1) = µ+

3

16

m2

µ

M
(S=1)
(n=2) = µ+

27

32

m2

µ
± 27m

32

√(
m

µ

)2

+ 512

243

(31)

where the signs ‘±’ denote additional splitting of even mass spectra at least for lower states.
Therefore, in this theory the breaking of discrete symmetry under the time inversion (the
T -violance) takes place [11] additionally to the symmetry breaking of the initial theory (1).

It should also be noted that the true spin operator of the model is not the operator of the
canonical momentum̂5v. The true spin operators are given by the expressions (20)–(22),
thereby for the caseS = 0 they are equal toSz up to the factors− sinhζ and i coshζ
respectively.

Finally, we represent another important aspect. It is now evident that the main demand
on models such as that of [2] is their correspondence to reality. Otherwise all these particle-
like solutions and field theories based on them will be no more than interesting mathematical
toys, i.e. ‘physics for one day’. As for the model considered here the analogy with the spin
Hamiltonians is very useful in this connection. It is well known that both the Hamiltonians
like (19) and double-well potentials are often exploited in physics. As examples one can
point out the following applications, the anisotropic paramagnet [12], the theory of molecular
vibrations [13], the model of the anharmonic oscillator in field theories [14], and the model
of interacting fermions in nuclear physics [15].
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